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Abstract

We consider mimetic finite difference approximations to second order elliptic problems on
non-matching multi-block grids. Mortar finite elements are employed on the non-matching
interfaces to impose weak continuity of the velocity. Optimal convergence and, for certain
cases, superconvergence is established for both the scalar variable and the velocity.

1 Introduction

In this work, we consider second order linear elliptic equations that in porous medium appli-
cations model single phase Darcy flow. We solve for pressurep and velocityu satisfying

u = −K∇p in Ω, (1.1)

∇ · u = b in Ω, (1.2)

p = g on∂Ω, (1.3)

whereΩ ⊂ Rdim , dim = 2 or 3, is a multi-block domain, andK is a symmetric, uniformly
positive definite tensor withL∞(Ω) components representing the permeability divided by the
viscosity. The Dirichlet boundary conditions are considered merely for simplicity.

In this paper, we analyze the convergence of a mortar mimetic finite difference method
(mortar MFD) on quadrilateral and simplicial meshes. The MFD method employs discrete
operators that preserve certain critical properties of the original continuum differential oper-
ators, such as conservation laws, solution symmetries, and fundamental identities of vector
calculus. Themimetic technique has been successfully employed in a number of applica-
tions, including diffusion [19, 12, 15], continuum mechanics [14], and gas dynamics [8]. It

∗Los Alamos National Laboratory, Mail Stop B284, Los Alamos, NM 87545, U.S.A.,
{berndt,lipnikov,shashkov }@lanl.gov . Supported by the U.S. Department of Energy, under con-
tract W-7405-ENG-36. LA-UR-04-4740.

†Institute for Computational Engineering and Sciences (ICES), Department of Aerospace Engineering and Engi-
neering Mechanics, and Department of Petroleum and Geosystems Engineering, The University of Texas at Austin,
Austin, TX 78712, U.S.A.,mfw@ices.utexas.edu . Partially supported by NSF grant EIA-0121523 and by
NPACI grant UCSD 10181410.

‡Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.,
yotov@math.pitt.edu . Partially supported by NSF grants DMS 0107389, DMS 0112239 and DMS 0411694.

1



has been extended to locally refined meshes with hanging nodes [13], and unstructured three-
dimensional meshes comprised of hexahedrons, tetrahedrons, and any cell type that has three
faces intersecting at each vertex. In this paper, we employ mortar finite element techniques to
extend the MFD method to the case of non-matching multi-block mortar grids.

Mixed finite element (MFE) discretizations on quadrilateral meshes [20, 21, 2, 10] are
based on the Piola transformation [20, 7], which preserves continuity of the normal component
of the velocity across mesh edges, but results in the necessity to integrate rational functions
over quadrilaterals. This is further complicated in the case of a full or non-constant diffusion
tensor. The results in [5] provide an efficient numerical quadrature with a minimal number of
points, allowing for the extension of MFE methods to general polygons and polyhedra.

The mortar MFE method has been studied, for example, in [23, 1] (see also [4, 3, 22]
for seminal work on mortar couplings for Galerkin finite element discretizations). In these
methods, the domain is divided into nonoverlapping subdomain blocks, and each of these
subdomain blocks is discretized on a locally constructed mesh. As a result, the subdomain
grids do not match at interblock boundaries. To solve this problem, Lagrange multiplier pres-
sures are introduced at the interblock boundaries. This Lagrange multiplier space is called
the mortar finite element space. It was shown in [1] that the mortar MFE method is optimally
convergent, if the boundary space has one order higher approximability than the normal trace
of the velocity space.

A connection between the MFD method and the MFE method with Raviart-Thomas finite
elements was established in [5]. This was achieved by showing that the scalar product in the
velocity space proposed in [12] for MFD methods can be viewed as a quadrature rule in the
context of MFE methods. In [6], superconvergence for the normal velocities in MFD meth-
ods onh2-uniform quadrilateral meshes is established. In this paper, we exploit the relation
between the methods to show that the mortar MFD method exhibits optimal convergence. We
also establish superconvergence for the normal velocity onh2-uniform quadrilateral meshes
and for the pressure on simplicial and general quadrilateral meshes.

The outline of the paper is as follows. In Section 2, we describe the mortar MFD method
by extending the MFD method to the case of non-overlapping subdomain blocks. In Section 3,
the mortar MFE method is described, and in Section 4 it is related to the mortar MFD method.
In Sections 5 and 6, we give error estimates for the velocity and the pressure, respectively. We
conclude the paper with numerical experiments in Section 7.

2 Mortar mimetic finite difference method

We assume thatΩ can be decomposed into non-overlapping subdomain blocksΩi,

Ω =
n⋃

i=1

Ωi.

Denote byΓi,j = ∂Ωi ∩ ∂Ωj the interior block interfaces. Let

Γ =
n⋃

i,j=1

Γi,j , and Γi = ∂Ωi ∩ Γ = ∂Ωi\∂Ω.

Let Th,i be a conforming, shape-regular, quasi-uniform partition ofΩi, 1 ≤ i ≤ n [9],
allowing for Th,i andTh,j to be non-matching onΓi,j . We will consider simplicial elements
in two and three dimensions as well as convex quadrilateral elements in two dimensions.
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Let Eh,i,j be the trace of meshTh,i on the interfaceΓi,j and letEh,i be the trace ofTh,i on
∂Ωi. Let Ẽh,i,j be another quasi-uniform partition ofΓi,j . We postulate that̃Eh,i,j ≡ Ẽh,j,i.
This partition will be used to impose interface matching conditions via mortar finite elements.
Finally, let

Th =
n⋃

i=1

Th,i.

2.1 Subdomain discretization

We now consider one subdomainΩi and introduce operatorsG andD by

Gp = −K∇p, Du =
{

∇ · u on Ωi,
−u · ni on ∂Ωi,

whereni is the outer unit normal to∂Ωi. We shall refer toG andD as the flux and extended
divergence operators, respectively. Let us introduce the scalar products

(u, v)Xi =
∫
Ωi

K−1u · v dx and (p, q)Qi =
∫
Ωi

pq dx +
∮

∂Ωi

pq ds,

in the spaceXi = L2(Ωi) of velocities and in the spaceQi = H1(Ωi) of pressures, respec-
tively. Using the above notations, the Gauss-Green formula is written as

(u, Gp)Xi = (p, D u)Qi .

This expression states that the flux and extended divergence operators are adjoint to each other,
i.e. G = D∗. In this section, we derive discrete operators that are adjoint to each other with
respect to certain scalar products in the discrete velocity and pressure spaces. For the sake of
simplicity, we omit subscript ‘i’ whenever this does not result in ambiguity.

Thefirst step in the mimetic finite difference (MFD) method is to specify discrete degrees
of freedom for the primary variables, pressure and velocity. The discrete pressure unknowns
are defined at the centers of the mesh elements ofTh,i and at the centers of the boundary faces
of Eh,i (edges in 2D). The discrete velocities are defined at the midpoints of mesh faces of
Th,i (edges in 2D) as normal components. In other words, a face-based unknown is a scalar
and represents the orthogonal projection of a velocity vector onto the unit vector normal to the
mesh face. The direction of the normal vector isa priori fixed.

Thesecondstep in the MFD method is to equip the spaces of discrete pressures and veloc-
ities with scalar products. We denote the vector space of discrete pressures byQd

i . The scalar
product on this vector spaceQd

i is given by

[~p, ~q]Qd
i

=
∑

E∈Th,i

|E| pE qE +
∑

f∈Eh,i

|f | pf qf , (2.1)

where|E| denotes the volume (area in 2D) of elementE, |f | denotes the area (lengh in 2D) of
facef , andpE , pf denote pressure components associated withE andf , respectively. Denote
byQd,0

i the vector space of only cell-based unknowns. The scalar product onQd,0
i is given by

the first sum in (2.1).
We denote the vector space of face-based velocities byXd

i . The scalar product onXd
i is

given by
[~u, ~v]Xd

i
=
∑

E∈Ti,h

[~u, ~v]Xd
i ,E , (2.2)
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where[~u, ~v]Xd
i ,E is a scalar product over elementE involving only normal velocity compo-

nents on element faces. Recall that a velocity vector inRdim can be recovered fromdim
orthogonal projections on anydim linearly independent vectors. For example, for a convex
non-degenerate cell inR3, any triplet of normal vectors to faces with a common point satisfy
the above requirement. These orthogonal projections are chosen as degrees of freedom. The
recovered velocities are used to define scalar product (2.2). We now consider two examples.

n4

v4

n1

v1

n1

n2r1

r2

r3

r4

T4

T1

Figure 1: Recovered vectorsv1, v4 and trianglesT1, T4.

LetE be a convex polygon withs edges (s = 3 for a triangle ands = 4 for a quadrilateral).
As illustrated in Fig. 1, four recovered velocity vectors can be associated with the four vertices
of a quadrilateral. For example, velocityv1 is recovered from its projections onto the normal
vectorsn1 andn2. In the general case, we denote byv(rk) the velocity recovered at thek-th
vertexrk of E, k = 1, . . . , s. In this paper, we shall consider two cell-based scalar products.
The first one is given by

[~u, ~v]Xd
i ,E =

1
αE

s∑
k=1

|Tk|K−1(rk)u(rk) · v(rk), αE =
1
|E|

s∑
k=1

|Tk|, (2.3)

where|Tk| is the area of the triangle formed by two edges sharing thek-th vertex. See, for
example, the shaded trianglesT1 andT4 in Fig. 1. The second cell-based scalar product
requires only one evaluation of the tensorK and is given by

[~u, ~v]Xd
i ,E =

1
αE

s∑
k=1

|Tk|K−1
E u(rk) · v(rk) (2.4)

whereKE is the value of tensorK at the mass center ofE.
Note that both (2.2), (2.3) and (2.2), (2.4) are indeed scalar products onXd

i , sinceK is a
uniformly bounded, symmetric and positive definite tensor, and

c1|E|
∑

f⊂∂E

v2
f ≤ [~v, ~v]Xd

i ,E ≤ c2|E|
∑

f⊂∂E

v2
f (2.5)

wherevf denotes the velocity component associated with facef , andc1, c2 are positive con-
stants independent ofh.

Let E be a convex polyhedron with flat faces such that each vertex ofE is shared by
exactly three faces. This allows us to uniquely recover velocity vectors at the vertices of
E. The scalar product over polyhedronE is given either by (2.3) or by (2.4), whereTk is the
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tetrahedron formed by the three edges sharing thek-th vertex ofE. Note that for a tetrahedron,
s = 4 andαE = 4.

The third step in the MFD method is to derive a discrete approximation to the divergence
operator,DIV d, which we shall refer to as theprimeoperator. The divergence theorem gives

(DIV d ~u)
∣∣∣
E

=
1
|E|

∑
f⊂∂E

uf |f | (2.6)

whereuf is the normal velocity components on facef and |f | is the face area. Formula
(2.6) assumes an external orientation of normal vectors. If the vector normal to facef points
into the element,uf must be replaced by−uf . The extended discrete divergence operator,
Dd : Xd

i → Qd
i , is given by

Dd~u =

 (DIV d~u)
∣∣
E

∀E ∈ Th,i,

−uf ∀f ∈ Eh,i.
(2.7)

In the fourth stepof the MFD method, a discrete flux operatorGd that is adjoint to the
discrete extended divergence operatorDd with respect to scalar products (2.1) and (2.2) is
derived, i.e.

[Dd~u, ~p]Qd
i
≡ [~u, Gd~p]Xd

i
, ∀~u ∈ Xd

i , ∀~p ∈ Qd
i . (2.8)

We will refer to (2.8) as the discrete Green’s formula. For the explicit formula of the operator
Gd, see [5]. Now, the MFD method for subdomainΩi may be summarized as follows:

~u = Gd ~p,

DIV d ~u = ~bi,
(2.9)

where~bi is in Qd
i . The entries of~bi are integral averages of the right-hand sideb over the

elements ofTh,i.

2.2 Interface conditions

The system (2.9) is closed by imposing continuity and boundary conditions. Let us consider
the interfaceΓi,j between subdomainsΩi andΩj . Hereafter, we will use subscript ‘i’ for
the vectors and operators satisfying equation (2.9). The continuity conditions that the true
solution satisfies are

pi|Γi,j = pj |Γi,j and ui · ni|Γi,j = −uj · nj |Γi,j . (2.10)

In order to impose the above conditions discretely on non-matching grids, we introduce the
intermediate vector spaceΛd

i,j ≡ Λd
j,i associated with the interface partitioñEh,i,j . We will

make precise the definition ofΛd
i,j later in Section 4, where it will be related to a mortar space

in mixed finite element method.
Denote byQd

i,j the vector space of pressure unknowns associated with the faces of parti-
tion Eh,i,j . The scalar product inQd

i,j is given by

[~pi,j , ~qi,j ]Qd
i,j

=
∑

f⊂Eh,i,j

|f | pi,j,f qi,j,f

wherepi,j,f (resp.,qi,j,f ) is the component of vector~pi,j (resp.,~qi,j) associated with facef .
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Similarly, we define the vector spaceXd
i,j of velocity unknowns associated with the faces

of partitionEh,i,j . We chooseXd
i,j to be isometric toQd

i,j , i.e.

[~ui,j , ~vi,j ]Xd
i,j

= [~ui,j , ~vi,j ]Qd
i,j
.

Finally, let Ri,j : Λd
i,j → Qd

i,j be a linear projection operator exact for constant vectors.
We will make precise the definition ofRi,j later in Section 4, where it will be related to the
orthogonal projector from the mortar finite element space to the space of piecewise constant
functions.

The continuity conditions are derived from two requirements. First, we require the local
mass conservation across each face ofẼh,i,j , i.e.

[~ui,j , Ri,j~µ]Xd
i,j

= −[~uj,i, Rj,i~µ]Xd
j,i

∀~µ ∈ Λd
i,j . (2.11)

LetFi,j be the diagonal matrix with entries that are the areas of faces ofEh,i,j . It is not difficult
to see that the mass conservation results in the following interface condition:

RT
i,j Fi,j ~ui,j = −RT

j,i Fj,i ~uj,i. (2.12)

Second, we require that the discrete Green’s formula (2.8) holds onΩi ∪Ωj . It is not difficult
to see that this will be true if the sum of the two discrete Green’s formulas leaves only outer
boundary contributions. According to (2.1), the boundary terms associated with the common
interface will cancel if

[~pi,j , ~ui,j ]Qd
i,j

= −[~pj,i, ~uj,i]Qd
j,i
.

The sufficient condition for that is as follows:

∃~λ ∈ Λd
i,j : ~pi,j = Ri,j

~λ and ~pj,i = Rj,i
~λ. (2.13)

In a very special case of non-matching meshes, the locally refined meshes, vector~λ can be
eliminated from (2.13). In Section 7, we derive simple formulas for the interface conditions
on locally refined meshes. In a more general case,~λ is considered as an additional unknown.

The system of equations (2.9) is closed by imposing continuity conditions (2.12) and
(2.13) and the boundary conditions

pf = gf ∀f ⊂ ∂Ω, (2.14)

wheregf is the integral average ofg over facef .

3 Mortar mixed finite element method

In this section we briefly recall the mortar mixed finite element method introduced in [23, 1],
which will be later related to the mortar MFD method from the previous section. We shall
follow the standard notations for norms, seminorm and scalar products. A weak solution of
(1.1)–(1.3) is a pairu ∈ H(div; Ω), p ∈ L2(Ω), such that

(K−1u,v) = (p,∇ · v)− 〈g,v · n〉∂Ω, v ∈ H(div; Ω), (3.1)

(∇ · u, w) = (b, w), w ∈ L2(Ω). (3.2)
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It is well known (see, e.g., [7, 18]) that (3.1)–(3.2) has an unique solution. The multidomain
formulation of (3.1)–(3.1) is based on the spaces

Vi = H(div; Ωi), V =
n⊕

i=1

Vi,

Wi = L2(Ωi), W =
n⊕

i=1

Wi = L2(Ω).

If the solution(u, p) of (3.1)–(3.2) belongs toH(div; Ω)×H1(Ω), it is easy to see [7, pp. 91–
92] that it satisfies, for1 ≤ i ≤ n,

(K−1u,v)Ωi = (p,∇ · v)Ωi − 〈p,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ, v ∈ Vi, (3.3)

(∇ · u, w)Ωi = (b, w)Ωi , w ∈Wi. (3.4)

The mortar mixed finite element method discretizes (3.3)–(3.4), coupled with a mortar-based
discretization of the continuity conditions (2.10). Next, we present the definition of the mixed
finite element spaces. We restrict ourself to the two-dimensional elements: quadrilaterals and
triangles. The finite element spaces for a tetrahedral element are constructed similar to the
finite element spaces for a triangular element.

For any elementE ∈ Th, there exists a bijection mappingFE : Ê → E, whereÊ is the
reference element. For example, in the case of convex quadrilaterals,Ê is the unit square
with verticesr̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T and r̂4 = (0, 1)T . Denote by
ri = (xi, yi)T , i = 1, 2, 3, 4, the four corresponding vertices of elementE as shown in Fig. 2.
Then,FE is the bilinear mapping given by

FE(r̂) = r1 (1− x̂)(1− ŷ) + r2 x̂(1− ŷ) + r3 x̂ŷ + r4 (1− x̂)ŷ.

Note that the Jacobi matrixDFE and its JacobianJE are linear functions of̂x andŷ. Indeed,
straightforward computations yield

DFE = [(1− ŷ) r21 + ŷ r34, (1− x̂) r41 + x̂ r32] ,

and
JE = 2|T124|+ 2(|T123| − |T124|)x̂+ 2(|T134| − |T124|)ŷ, (3.5)

whererij = ri − rj and|Tijk| is the area of the triangle with verticesri, rj andrk. SinceE
is convex, the JacobianJE is uniformly positive, i.e.JE(x̂, ŷ) > 0. We denote the inverse
mapping byF−1

E and its Jacobian byJF−1
E

.

In the case of triangles,̂E is the reference right triangle with verticesr̂1 = (0, 0)T ,
r̂2 = (1, 0)T , andr̂3 = (0, 1)T . The linear mapping for triangles has the form

FE(r̂) = r1(1− x̂− ŷ) + r2x̂+ r3ŷ, (3.6)

with respective Jacobi matrix and Jacobian

DFE = [r21, r31]
T and JE = 2|T123|. (3.7)

Note that in this case the mapping is affine and the Jacobi matrix and its Jacobian are constants.
We denote the lowest order Raviart-Thomas-Nedelec (RTN) mixed finite element spaces

[20, 17, 16] by
Vh,i ×Wh,i ⊂ Vi ×Wi
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Figure 2: Bilinear mapping and orientation of normal vectors.

These spaces are initially defined on the reference element. For example, ifÊ is the unit
square, the spaces are

V̂(Ê) = P1,0(Ê)× P0,1(Ê) and Ŵ (Ê) = P0(Ê),

whereP1,0 (or P0,1) denotes the space of polynomials linear in thex̂ (or ŷ) variable and
constant in the other variable, andP0 denotes the space of constant functions. In the case
whenÊ is the unit triangle, the spaces on this reference element are

V̂(Ê) = P0(Ê)× P0(Ê) + P0(Ê)x̂ and Ŵ (Ê) = P0(Ê).

The velocity space on any elementE is defined via the Piola transformation

1
JE

DFE : (L2(Ê))dim → (L2(E))dim , ∀E ∈ Th.

The RTN0 spaces onTh,i are given by

Vh,i = {v ∈ Vi : v|E = J−1
E DFEv̂ ◦ F−1

E , v̂ ∈ V̂(Ê) ∀E ∈ Th,i},

Wh,i = {w ∈Wi : w|E = ŵ ◦ F−1
E , ŵ ∈ Ŵ (Ê) ∀E ∈ Th,i}.

(3.8)

The following two properties of the Piola transformation will be useful in the analysis. For
anyv̂ ∈ V̂(Ê) and the relatedv = J−1

E DFEv̂ ◦ F−1
E , we have∫

E
∇ · v dx =

∫
Ê
∇̂· v̂ dx̂ and

∫
f
v · nf ds =

∫
f̂
v̂ · n̂f̂ dŝ, (3.9)

wheref is any face ofE andnf andn̂f̂ are the unit normal vectors tof andf̂ , respectively.

The quasi-uniform partitioñEh,i,j of Γi,j introduced above is referred to as the mortar
interface mesh. Denote byΛh,i,j ⊂ L2(Γi,j) the mortar space onΓi,j , containing either the
continuous or discontinuous piecewise polynomials of degree one onẼh,i,j . Let

Vh =
n⊕

i=1

Vh,i, Wh =
n⊕

i=1

Wh,i, Λh =
⊕

1≤i<j≤n

Λh,i,j .

Although normal components of vectors inVh are continuous between elements within each
blockΩi, there is no such restriction acrossΓ. The spaceΛh is called the mortar finite element
space onΓ. In the following we treat any functionµ ∈ Λh as extended by zero on∂Ω. An
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additional assumption on the spaceΛh and, hence,̃Eh,i,j will be made below in (4.7) and
(5.13). We remark that̃Eh,i,j need not be conforming if a discontinuous space is used.

In the mortar mixed finite element approximation of (3.1)–(3.2), we seekuh ∈ Vh, ph ∈
Wh, λh ∈ Λh such that, for1 ≤ i ≤ n,

(K−1uh,v)Ωi = (ph,∇ · v)Ωi − 〈λh,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ, v ∈ Vh,i, (3.10)

(∇ · uh, w)Ωi = (b, w)Ωi , w ∈Wh,i, (3.11)
n∑

i=1

〈uh · ni, µ〉Γi = 0, µ ∈ Λh. (3.12)

Remark 3.1 The above method imposes continuity of pressure by approximating the pressure
on the interfaces by a single-valued mortar functionλh, while continuity of normal flux is
imposed weakly in(3.12)with respect to Lagrange multipliers in the mortar space.

4 Relating mortar MFD and mortar MFE methods

The basic tool for the error analysis of the mortar MFD method is based on establishing
connections with the mortar mixed finite element (MFE) method (3.10)–(3.12). We begin by
establishing an isomorphism between finite difference and finite element spaces.

The degrees of freedom ofVh,i are associated with mesh faces. Therefore, the spaceVh,i

is isomorphic to the vector spaceXd
i . Similarly, the degrees of freedom of the finite element

spaceWh,i are associated with the cell centers and the space is isometric to the vector space
Qd,0

i (see [5]). By the same arguments, the vector spaceXd
i,j is isometric to the finite element

spaceVh,i · ni|Γi,j
.

Finally, we choseΛd
i,j to be isomorphic to finite element spaceΛh,i,j . In particular, the

degrees of freedom ofΛd
i,j are the values of the pressure at the vertices of partitionẼh,i,j . In

the case of discontinuous mortars, each vertex may be associated with multiple degrees of
freedom. The projectorRi,j is implicitly given by

[Ri,j~µi,j , ~qi,j ]Qd
i,j

= 〈µh,i,j , qh,i,j〉Γi,j , ∀~µi,j ∈ Λd
i,j , ∀~qi,j ∈ Qd

i,j , (4.1)

whereµh,i,j ∈ Λh,i,j andqh,i,j ∈ Vh,i · ni|Γi,j
are the finite element counterparts of vectors

~µi,j and~qi,j , respectively.
For each interfaceΓi,j , we define anL2-orthogonal projection operatorRh,i,j : L2(Γi,j) →

Vh,i · ni|Γi,j
such that, for anyφ ∈ L2(Γi,j),

〈φ−Rh,i,jφ, v · ni〉Γi,j = 0 ∀v ∈ Vh,i.

The operatorRh,j,i : L2(Γi,j) → Vh,j · nj |Γi,j is defined similarly. LetRh,i : L2(∂Ωi) →
Vh,i · ni|∂Ωi

be such that, for anyφ ∈ L2(∂Ωi),

Rh,iφ|Γi,j = Rh,i,jφ.

Note that the projection operatorRh,i,j restricted toΛh,i,j acts from the space of piecewise
linear functions oñEh,i,j to the space of piecewise constant functions onEh,i,j . Using (4.1), it
is clear that the projectorRi,j defined on the vector spaceΛd

i,j is the matrix representation of
Rh,i,j : Λh,i,j → Vh,i · ni|Γi,j .
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The next step is to reformulate the MFD method in a way that is more suitable for our
analysis. Multiplying the first equation in (2.9) by~vi ∈ Xd

i , the second one by~qi ∈ Qd,0
i , and

using the discrete Green’s formula (2.8), we get

[~ui, ~vi]Xd
i
− [~pi, Dd

i ~vi]Qd
i

= 0, ~vi ∈ Xd
i ,

[~qi, DIV d
i ~ui]Qd,0

i
= [~bi, ~qi]Qd,0

i
, ~qi ∈ Qd,0

i .
(4.2)

Recall that the above equations are coupled with the continuity conditions (2.12), (2.13) and
the boundary conditions (2.14). Using the isomorphism between the finite element space
Vh,i ×Wh,i and the vector spaceXd

i ×Qd,0
i , we define finite element functionsqh,i, bh,i and

uh,i corresponding to vectors~qi,~bi and~ui, respectively. Then,

[~qi, DIV d
i ~ui]Qd,0

i
= (qh,i, ∇ · uh,i)Ωi .

The definition of~bi implies that

[~bi, ~qi]Qd,0
i

= (bh,i, qh,i)Ωi = (b, qh,i)Ωi .

We decompose vector~pi as~pi = (~p 0
i , ~p

1
i ), where~p 0

i ∈ Qd,0
i , and denote the finite element

counterparts of~p 0
i and~vi ∈ Xd

i by ph,i andvh,i, respectively. Letλh ∈ Λh be the mortar
finite element counterpart of~λ from the pressure continuity condition (2.13). The Dirichlet
boundary conditions specify the components of vector~p 1

i on∂Ω. Using (2.7), (2.13), (2.14),
and the definition of the projectorsRi,j andRh,i, we get

[~pi, Dd
i ~vi]Qd

i
= (ph,i, ∇ · vh,i)Ωi − 〈Rh,iλh, vh,i · ni〉Γi − 〈Rh,ig,vh,i · ni〉∂Ωi\Γ

= (ph,i, ∇ · vh,i)Ωi − 〈λh, vh,i · ni〉Γi − 〈g,vh,i · ni〉∂Ωi\Γ.
(4.3)

Next, lettingµh,i,j ∈ Λh,i,j be the finite element counterpart of vector~µi,j , the continuity
condition (2.11) becomes

〈µh,i,j , uh,i · ni〉Γi,j = −〈µh,i,j , uh,j · nj〉Γj,i .

Finally, by introducing the quadrature rule

(K−1uh,i, vh,i)h,Ωi
≡ [~ui, ~vi]Xd

i
,

we can reformulate the mortar MFD problem (2.9), (2.13), (2.12) , (2.14) as the following
problem. We seekuh ∈ Vh, ph ∈Wh, λh ∈ Λh such that, for1 ≤ i ≤ n,

(K−1uh,v)h,Ωi
= (ph,∇ · v)Ωi − 〈λh,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ, v ∈ Vh,i, (4.4)

(∇ · uh, w)Ωi = (b, w)Ωi , w ∈Wh,i, (4.5)
n∑

i=1

〈uh · ni, µ〉Γi = 0, µ ∈ Λh. (4.6)

The next lemma shows that the problem is well posed.

Lemma 4.1 Assume that for anyφ ∈ Λh,

Rh,iφ = 0, 1 ≤ i ≤ n, implies thatφ = 0. (4.7)

Then there exists a unique solution of(4.4)–(4.6).
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Proof.The proof closely follows the proof of Lemma 2.1 in [1] with only a slight modi-
fication. Since (4.4)–(4.6) is a square system, it is sufficient to show uniqueness. Letb = 0,
g = 0. Settingv = uh, w = ph, andµ = −λh, adding (4.4)–(4.6), and summing over
1 ≤ i ≤ n, implies that

n∑
i=1

(K−1uh,uh)h,Ωi
= 0.

The coercivity result from [5]

n∑
i=1

(K−1uh,uh)h,Ωi
≥ C‖uh‖2

0,Ω (4.8)

implies thatuh = 0. The argument for proving thatph = λh = 0 is the same as in the proof
of Lemma 2.1 in [1]. �

Remark 4.1 Above, as well as in several other places in this paper, we employ results ob-
tained in [1]. Although [1] only treats affine elements, it is easy to check that the arguments
used to obtain the results referred to here also apply in the case of general quadrilateral
elements.

We end this section by remarking that (4.8) and the continuity of scalar products(·, ·)h,Ωi

imply that these scalar products give rise to a norm‖ · ‖h in Vh, which is equivalent to the
L2-norm. In other words, there exist positive constantsc1 andc2 independent ofh, such that

c1‖v‖0,Ω ≤ ‖v‖h ≤ c2‖v‖0,Ω ∀ v ∈ Vh. (4.9)

5 Velocity error estimates

We first recall several projection operators that will be used in the analysis. On eachΩi there
exists a projectionΠi from (H1(Ωi))dim ontoVh,i satisfying

(∇ · (Πiq− q), w)Ωi = 0, w ∈Wh,i. (5.1)

Let Π :
⊕n

i=1(H
1(Ωi))dim → Vh be defined by(Πq)|Ωi = Πi(q|Ωi). The operatorΠ is

defined locally on each elementE by

Π̂q = Π̂q̂,

whereΠ̂ :
(
H1(Ê)

)dim
→ V̂(Ê) is the reference element projection operator satisfying∫

f̂
(Π̂q̂− q̂) · n̂ = 0 ∀f̂ ⊂ ∂Ê.

LetPh be theL2(Γ) projection ontoΛh satisfying for anyψ ∈ L2(Γ),

〈ψ − Phψ, µ〉Γ = 0 ∀µ ∈ Λh.

For anyϕ ∈ L2(Ω), letQhϕ ∈Wh be itsL2(Ω) projection satisfying

(ϕ−Qhϕ,w)Ω = 0 ∀w ∈Wh.

11



We state several well-known approximation properties of these projection operators:

‖ψ − Phψ‖0,Γi,j ≤ C‖ψ‖r,Γi,jh
r, 0 ≤ r ≤ 2, (5.2)

‖ϕ−Qhϕ‖0 ≤ C‖ϕ‖r,Ωih
r, 0 ≤ r ≤ 1, (5.3)

‖q−Πiq‖0,Ωi ≤ C‖q‖1,Ωih, (5.4)

‖∇ · (q−Πiq)‖0,Ωi ≤ C‖q‖r+1,Ωih
r, 0 ≤ r ≤ 1, (5.5)

where‖·‖r is theHr-norm. Bounds (5.2) and (5.3) are standardL2-projection approximation
results [9]; bounds (5.4) and (5.5) can be found in [7, 18] for affine elements and [20, 21] for
quadrilaterals.

We will also make use of the following continuity bound forΠ.

Lemma 5.1 For all elementsE and for allq ∈ (H1(E))dim , there exists a constantC inde-
pendent ofh such that

‖Πq‖1,E ≤ C‖q‖1,E .

Proof.Let us first consider the case of simplicial grids in two and three dimensions. It is
well known [17] that for allE ∈ Th

‖Πq‖H(div;E) ≤ C‖q‖1,E .

The definition ofVh on simplices gives that on eachE, we have∇ · Πq = 1
dim

∂(Πq)i

∂xi
,

i = 1, . . . , dim, which, combined with the above formula, implies the assertion of the lemma.
In the case of quadrilateral grids, it follows from the definition of the bilinear mapping

that for allx̂ ∈ Ê ands = 0, 1

|DFE(x̂)|s,∞,Ê ≤ Ch, |JE(x̂)|s,∞,Ê ≤ Ch2,

∣∣∣∣ 1
JE

DFE

∣∣∣∣
s,∞,Ê

≤ Ch−1, (5.6)

|F−1
E |1,∞,Ê ≤ Ch−1, ‖JF−1

E
‖∞,Ê ≤ Ch−2 (5.7)

The rest of the proof is based on the inverse inequality which is not a trivial result for a general
quadrilateral. For the sake of completeness, we prove it below. The definition (3.8) implies∫

E

∣∣∣∣ ∂q∂xi

∣∣∣∣2 dx =
∫

Ê

∣∣∣∣ ∂∂xi

(
1
JE

DFEq̂
)∣∣∣∣2 |JE |dx̂.

Thus, using (5.6) and (5.7), we get

|q|1,E ≤ C

(∥∥∥∥ 1
JE

DFE

∥∥∥∥
∞,Ê

|F−1
E |1,∞,Ê‖JE‖1/2

∞,Ê
|q̂|1,Ê

+ ‖JE‖1/2

∞,Ê

∣∣∣∣ 1
JE

DFE

∣∣∣∣
1,∞,Ê

|F−1
E |1,∞,Ê‖q̂‖0,Ê

)
≤ Ch−1‖q̂‖1,Ê .

(5.8)

Similarly, we get the estimates

‖q‖0,E ≤ C‖q̂‖0,Ê and ‖q̂‖0,Ê ≤ C‖q‖0,E . (5.9)
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Combining (5.8) and (5.9) and using the standard inverse inequality on the reference element
Ê, we get

|q|1,E ≤ Ch−1‖q̂‖1,Ê ≤ Ch−1‖q̂‖0,Ê ≤ Ch−1‖q‖0,E .

Using the inverse inequality, we have

|Πq|1,E = |Πq− q0|1,E ≤ Ch−1‖Πq− q0‖0,E

≤ Ch−1(‖Πq− q‖0,E + ‖q− q0‖0,E)

whereq0 is a constant vector. Letq0 be theL2(E) projection ofq onto the space of constant
vectors. The approximation properties (5.3) and (5.4) result in the estimate

|Πq|1,E ≤ C‖q‖1,E .

The bound‖Πq‖0,E ≤ C‖q‖1,E follows from the approximation property (5.4). This proves
the assertion of the lemma. �

Throughout the paper we will be using the nonstandard trace theorem [11, Theorem
1.5.2.1]

‖q‖r,Γi,j ≤ C‖q‖r+1/2,Ωi
.

We will also make use of the trace inequality

‖v · ni‖0,∂Ωi
≤ Ch−1/2‖v‖0,Ωi , ∀ v ∈ Vh,i, (5.10)

which follows from a simple scaling argument.
Let

Vh,0 =

{
v ∈ Vh :

n∑
i=1

〈v|Ωi · ni, µ〉Γi = 0 ∀µ ∈ Λh

}
be the space of weakly continuous velocities, with respect to the mortar space. Then the
mimetic finite difference method (4.4)–(4.6) can be rewritten in the following way. Find
uh ∈ Vh,0 andph ∈Wh such that

(K−1uh,v)h =
n∑

i=1

(ph,∇ · v)Ωi − 〈g,v · n〉∂Ω, (5.11)

n∑
i=1

(∇ · uh, w)Ωi = (b, w), (5.12)

for v ∈ Vh,0 andw ∈Wh. It was shown in [1] that there exists a projection operatorΠ0 onto
Vh,0 such that, for anyq ∈ (H1(Ω))dim ,

(∇ · (Π0q− q), w)Ω = 0, w ∈Wh.

Moreover, if there exists a constantC, independent ofh, such that

‖µ‖0,Γi,j ≤ C(‖Rh,iµ‖0,Γi,j + ‖Rh,jµ‖0,Γi,j ), ∀µ ∈ Λh, 1 ≤ i < j ≤ n, (5.13)

thenΠ0 satisfies the approximation properties

‖Π0q−Πq‖0 ≤ C
n∑

i=1

‖q‖r+1/2,Ωi
hr+1/2, 0 ≤ r ≤ 1, (5.14)

and

‖Π0q− q‖0 ≤ C
n∑

i=1

‖q‖1,Ωih. (5.15)

13



5.1 Optimal convergence

In this section we prove optimal error estimates for the mortar MFD method. The analysis is
the same for both scalar products (2.3) and (2.4).

Subtracting (5.11)–(5.12) from (3.3)–(3.4) gives the error equations

(K−1(Πu− uh),v)h =
n∑

i=1

(
(p− ph,∇ · v)Ωi − 〈p,v · ni〉Γi

)
+ (K−1(Πu− u),v)− σ(K−1Πu,v), (5.16)

n∑
i=1

(∇ · (u− uh), w)Ωi = 0, (5.17)

for v ∈ Vh,0 andw ∈Wh, where

σ(q,v) = (q,v)− (q,v)h.

It was shown in [5] that,(q,v)h = 0 for anyv ∈ Vh, any constant vectorq and the scalar
product (2.4). A similar result has been shown in [6] for the scalar product (2.3). Thus, letting
q0 be the mean value ofq onE, we get

|σ(q,v)E | = |σ(q− q0,v)E | ≤ Ch|q|1,E‖v‖0,E , E ∈ Th.

Therefore,

|σ(K−1Πu,v)| ≤ C
∑

E∈Th

h‖K−1‖1,∞,E‖Πu‖1,E‖v‖0,E

≤ C
n∑

i=1

h‖K−1‖1,∞,Ωi‖u‖1,Ωi‖v‖0,Ωi ,

(5.18)

using Lemma 5.1 for the last inequality. Clearly (5.17) implies that

∇ · (Π0u− uh) = ∇ · (Πu− uh) = 0. (5.19)

Takingv = Π0u− uh in (5.16) we get

(K−1(Π0u− uh),Π0u− uh)h

=
n∑

i=1

〈Php− p, (Π0u− uh) · ni〉Γi + (K−1(Πu− u),Π0u− uh)

+ (K−1(Π0u−Πu),Π0u− uh)h − σ(K−1Πu,Π0u− uh)

≤
n∑

i=1

‖Php− p‖0,Γi‖(Π0u− uh) · ni‖0,Γi

+ (K−1(Πu− u),Π0u− uh) + (K−1(Π0u−Πu),Π0u− uh)h

+ |σ(K−1Πu,Π0u− uh)|

≤ C

(
n∑

i=1

‖p‖2,Ωih
3/2‖Π0u− uh‖0,Ωih

−1/2

+
n∑

i=1

‖K−1‖1,∞,Ωi‖u‖1,Ωih‖Π0u− uh‖0

)
,

(5.20)

where we used (5.2), (5.10), (5.4), (5.14), and (5.18) for the last inequality. With (5.19)–
(5.20), (4.9), (5.5), and (5.15) we have shown the following theorem.
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r′3r4
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r3 = r′4

Figure 3:h2-uniform quadrilateral grid.

Theorem 5.1 LetK−1 ∈ W 1,∞(Ωi), 1 ≤ i ≤ n, and let(4.7) hold. Then, for the velocity
uh of the mortar mimetic finite difference method(4.4)–(4.6), there exists a positive constant
C independent ofh such that

‖∇ · (u− uh)‖0 ≤ C
n∑

i=1

‖u‖2,Ωih.

Moreover, if (5.13)holds, then

‖u− uh‖0 ≤ C
n∑

i=1

(‖p‖2,Ωi + ‖u‖1,Ωi)h.

5.2 Superconvergence

In this section, we show that in the case ofh2-uniform quadrilateral grids, the velocity con-
verges with an order higher thanO(h) in a discreteL2-norm. It is pertinent to note that the
superconvergence result is proved only for the scalar product (2.3).

Referring to Figure 3, a quadrilateral partition is calledh2-uniform if each element is an
h2-parallelogram, i.e.,‖(r2 − r1) − (r3 − r4)‖ ≤ Ch2, and any two adjacent quadrilaterals
form anh2-parallelogram, i.e.,‖(r2 − r1)− (r′2 − r′1)‖ ≤ Ch2.

To establish the superconvergence, we modify the last inequality in (5.20). In particular,
(5.2) gives

n∑
i=1

‖Php− p‖0,Γi‖(Π0u− uh) · ni‖0,Γi ≤ C

n∑
i=1

‖p‖5/2,Ωi
h2‖Π0u− uh‖0,Ωih

−1/2,

and (5.14) gives

(K−1(Π0u−Πu),Π0u− uh)h ≤ C

n∑
i=1

‖u‖3/2,Ωi
h3/2‖Π0u− uh‖0.

In addition, Theorem 5.1 in [10] implies

(K−1(Πu− u),Π0u− uh) ≤ C

n∑
i=1

‖K−1‖2,∞,Ωi‖u‖2,Ωih
2‖Π0u− uh‖0,
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and Lemma 4.3 in [6] gives

|σ(K−1Πu,Π0u− uh)| ≤ C
n∑

i=1

‖K−1‖2,∞,Ωi‖u‖2,Ωih
2‖Π0u− uh‖0.

Combining the above four bounds, we arrive at the following superconvergence result.

Theorem 5.2 LetK−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n, and let(5.13)hold. Then, for the velocity
uh of the mortar mimetic finite difference method(4.4)–(4.6)with the scalar product(2.3)on
h2-uniform quadrilateral grids, there exists a positive constantC independent ofh such that

‖Πu− uh‖0 ≤ C

n∑
i=1

(‖p‖5/2,Ωi
+ ‖u‖2,Ωi)h

3/2.

The above result can be applied to obtain superconvergence for the computed velocity to
the average edge fluxes. Define, for anyv ∈ (H1(Ωi))2, i = 1, . . . , n,

|||v|||2 =
∑

E∈Th

|||v|||2E , |||v|||2E =
4∑

k=1

(∫
ek

v · nk ds

)2

. (5.21)

It is easy to see [6] that||| · ||| is a norm onVh and there exist constantsc1 andc2 independent
of h such that

c1‖v‖0,Ω ≤ |||v||| ≤ c2‖v‖0,Ω ∀v ∈ Vh. (5.22)

Moreover,|||Πv − v||| = 0 for anyv ∈ (H1(Ωi))2, i = 1, . . . , n. We have the following
superconvergence result.

Theorem 5.3 Under the assumptions of Theorem 5.2, there exists a positive constantC inde-
pendent ofh such that

|||u− uh||| ≤ C
n∑

i=1

(‖p‖5/2,Ωi
+ ‖u‖2,Ωi)h

3/2.

Proof.By the triangle inequality and (5.22),

|||u− uh||| ≤ |||Πu− uh||| ≤ c2‖Πu− uh‖0,

and the assertion of the theorem follows from Theorem 5.2. �

6 Pressure error estimates

In this section we employ a duality argument to obtain a superconvergence estimate forQhp−
ph. The estimate is proved for both scalar products (2.3) and (2.4) on triangular, tetrahedral
andh2-uniform quadrilateral meshes. The general quadrilateral meshes require the scalar
product (2.4).
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Lemma 6.1 LetK−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n, and the scalar product be given by(2.3).
Then, for allv,q ∈ Vh, there exists a positive constantC independent ofh such that

|σ(K−1v,q)| ≤ C
∑

E∈Th

hr‖v‖1,E‖q‖1,E

wherer = 2 on simplicial elements andh2-parallelograms, andr = 1 on general quadrilat-
eral grids. If the scalar product is given by(2.4), thenr = 2 for both simplicial elements and
general quadrilaterals.

Proof.For an elementE ∈ Th, we define the error

σE(K−1v,q) =
∫

E
K−1v · q dx− (K−1v,q)h,E . (6.1)

First, we consider the scalar product(K−1v, q)h,E given by (2.3). It was shown in [5]
thatσE(v0,q) = 0 for all constant vectors . Using this result and symmetry of (6.1), we get

σE(K−1v,q) = σE(K−1v,q− q0) + σE((K−1 −K−1
0 )(v − v0),q0)

+ σE(K−1v0,q0)
(6.2)

wherev0, q0 are constant vectors andK0 is a constant tensor. By a constant vector (tensor)
we mean a vector (tensor) with constant components. Letv0 andq0 be theL2(E) orthogonal
projections ofv andq, respectively, onto the space of constant vectors, letK−1

0 = K−1(mE),
wheremE is the center of gravity ofE, and let(K−1v)0 be theL2(E) projection ofK−1v
into the space of constant vectors. Using the Taylor’s theorem, it is easy to verify that

‖K−1 −K−1
0 ‖∞,E ≤ Ch‖K−1‖1,∞,E

Using (2.5) and (5.3),

|σE(K−1v,q−q0)| = |σE(K−1v− (K−1v)0,q−q0)| ≤ Ch2‖K−1‖1,∞,E‖v‖1,E‖q‖1,E .

The second term in (6.2) is estimated as follows:

|σE((K−1 −K−1
0 )(v − v0),q0)| ≤ C‖K−1 −K−1

0 ‖∞,E‖v − v0‖0,E‖q0‖0,E

≤ Ch2‖K‖1,∞,E‖v‖1,E‖q‖0,E .
(6.3)

The remaining term in (6.2) is estimated as follows:∫
E
K−1v0 · q0 dx = K−1v0 · q0|E|,

whereK−1 is the mean value ofK−1 onE, and

(K−1v0,q0)h,E =
1
αE

s∑
j=1

|Tj |K−1(rj)v0 · q0

whereαE = 2 for quadrilaterals,αE = 3 for triangles,αE = 4 for tetrahedra, ands is the
number of vertices of elementE. For simplicial elements,|Tj | = |E| and it is easy to check
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that the above quadrature is exact for linear tensors. An application of the Bramble-Hilbert
lemma gives

|σE(K−1v0,q0)| ≤ Ch2|K−1v0|2,E‖q0‖0,E ≤ Ch2|K−1|2,∞,E‖v0‖0,E‖q0‖0,E . (6.4)

For general quadrilaterals, the quadrature is exact for constant tensors and we have

|σE(K−1v0,q0)| = |σE((K−1 −K−1
0 )v0,q0)| ≤ Ch‖K−1‖1,∞,E‖v0‖0,E‖q0‖0,E

Let us show that this term isO(h2) in the case ofh2-parallelograms. To do this we map it to
the reference element. It follows from (3.5) thatJE(r̂j) = 2|Tj |. Thus,

(K−1v0,q0)h,E =
1
2

4∑
j=1

|Tj |K−1(rj)v0 · q0 =
1
2

4∑
j=1

|Tj |K̂−1(r̂j)v0 · q0

=
1
4

4∑
j=1

BE(r̂j)v0 · q0 ≡ (BEv0,q0)T ,

(6.5)

whereBE = JEK̂
−1. Note that the quadrature rule(·, ·)T is the trapezoidal rule on the

reference squarêE.
For the integral term in the quadrature error we write∫

E
K−1v0 · q0 dx =

∫
Ê
K̂−1v0 · q0JE dx̂ =

∫
Ê
BEv0 · q0 dx̂. (6.6)

Using (6.5) and (6.6) we obtain

σE(K−1v0,q0) =
∫

Ê
BEv0 · q0 dx̂− (BEv0,q0)T ≡ σÊ(BEv0,q0). (6.7)

Since the trapezoidal quadrature rule onÊ is exact for linear polynomials, the Bramble-Hilbert
lemma implies that

|σÊ(Bv0,q0)| ≤ C|B|2,∞,Ê‖v0‖0,Ê‖q0‖0,Ê (6.8)

To bound on|B|2,∞,Ê , we note that for anh2-parallelogram

|JE |1,∞,Ê ≤ Ch3, |JE |2,∞,Ê = 0, |FE |s,∞,Ê ≤ Chs, s = 1, 2.

Therefore,

|B|2,∞,Ê ≤ C
(
h3|K̂−1|1,∞,Ê + h2|K̂−1|2,∞,Ê

)
≤ Ch4‖K−1‖2,∞,E ,

using the chain rule for the last inequality. The above bound, combined with (6.7) and (6.8),
implies

|σE(K−1v0,q0)| ≤ Ch4‖K−1‖2,∞,E‖v0‖0,Ê‖q0‖0,Ê

≤ Ch2‖K−1‖2,∞,E‖v‖0,E‖q‖0,E ,

Let the scalar product(K−1v, q)h,E be given by (2.4). The only thing we have to do is
to derive an estimate for the third term in (6.2). Note that the scalar product

(K−1v0,q0)h,E =
1
αE

s∑
j=1

|Tj |K−1
E v0 · q0 = |E|K−1

E v0 · q0
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is exact for linear tensors for both simplicial and quadrilateral elements. The application of
the Bramble-Hilbert lemma gives estimate (6.4).

The assertion of the lemma follows from the Hölder inequality. �

We continue with the duality argument for bounding‖Qhp − ph‖0. We first rewrite the
error equation (5.16) as follows:

(K−1(u− uh),v) =
n∑

i=1

(
(p− ph,∇ · v)Ωi − 〈p,v · ni〉Γi

)
− σ(K−1uh,v) (6.9)

Letϕ be the solution of

−∇ ·K∇ϕ = −(Qhp− ph) in Ω,
ϕ = 0 on∂Ω.

By elliptic regularity,
‖ϕ‖2 ≤ C‖Qhp− ph‖0. (6.10)

Takev = Π0K∇ϕ in (6.9) to get

‖Qhp− ph‖2
0 =

n∑
i=1

(Qhp− ph,∇ ·Π0K∇ϕ)Ωi

=
n∑

i=1

(
(K−1(u− uh),Π0K∇ϕ)Ωi + 〈p− Php,Π0K∇ϕ · ni〉Γi

)
+ σ(K−1uh,Π0K∇ϕ). (6.11)

The first two terms on the right in (6.11) appear also in the proof of Theorem 5.1 in [1], where
it was shown that

n∑
i=1

(
(K−1(u− uh),Π0K∇ϕ)Ωi + 〈p− Php,Π0K∇ϕ · ni〉Γi

)
≤ C

n∑
i=1

h2‖K‖1,∞,Ωi(‖p‖2,Ωi + ‖u‖2,Ωi)‖ϕ‖2,Ωi . (6.12)

Using Lemma 6.1, the last term in (6.11) can be bounded as

|σ(K−1uh,Π0K∇ϕ)|

≤ C
∑

E∈Th

hr‖uh‖1,E‖Π0K∇ϕ‖1,E

≤ C
∑

E∈Th

hr(‖uh −Πu‖1,E + ‖Πu‖1,E)

× (‖Π0K∇ϕ−ΠK∇ϕ‖1,E + ‖ΠK∇ϕ‖1,E)

≤ C
∑

E∈Th

hr(h−1‖uh −Πu‖0,E + ‖u‖1,E)

× (h−1‖Π0K∇ϕ−ΠK∇ϕ‖0,E + ‖K∇ϕ‖1,E)

≤ C
n∑

i=1

hr‖K‖1,∞,Ωi(‖p‖2,Ωi + ‖u‖1,Ωi)‖ϕ‖2,Ωi ,

(6.13)

where we used the inverse inequality and Lemma 5.1 in the third inequality, and Theorem 5.1
and (5.14) in the last inequality. A combination of (6.10)–(6.13) gives the following result.
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Theorem 6.1 Let K ∈ W 1,∞(Ωi) andK−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n, and the scalar
product be given by(2.3). Then, for the pressureph of the mortar mimetic finite difference
method(4.4)–(4.6), if (5.13)holds, then

‖Qhp− ph‖0 ≤ C

n∑
i=1

(‖p‖2,Ωi + ‖u‖2,Ωi)h
r,

‖p− ph‖0 ≤ C
n∑

i=1

(‖p‖2,Ωi + ‖u‖2,Ωi)h,

wherer = 2 on meshes with both simplicial elements andh2 parallelograms, andr = 1 on
general quadrilateral grids. If the scalar product is given by(2.4), thenr = 2 on meshes with
both simplicial elements and general quadrilaterals.

7 Numerical experiments

In this section we confirm the theoretical estimates for a special case of non-matching meshes,
the locally refined meshes. An example of a computational mesh is shown in Fig. 4. The
mesh consists of 13 quadrilateral subdomains with different levels of uniform refinement.
The convergence of the mortar MFD method has been studied on the sequence of meshes
generated by uniform refinement (and coarsening) of the shown mesh.

Another sequence of meshes is generated from the above sequence by perturbing the po-
sitions of mesh nodes. The mesh node is moved to a random position inside a square centered
at the node. The side of the square are aligned with the coordinate axes and equal to 40% of
the size of the smallest edge sharing the node. The mesh nodes on the domain boundary and
subdomain interfaces are not perturbed. An example of a random mesh is shown in Fig. 5.

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

2.0

1.5

||| p − ph |||
||| p − ph |||∞
||| u − uh |||
||| u − uh |||∞

Figure 4: Convergence rates on a smooth mesh

The interface conditions for the mortar MFD method are drastically simplified in the case
of locally refined meshes. Let us consider the interfaceΓi,j . Let Eh,i,j be the finer partition,
Ẽh,i,j = Eh,j,i and the mortar spaceΛh,i,j be discontinuous.

In order to describe projectorsRi,j andRj,i, it is sufficient to consider a three-cell in-
terface. Let cellsE1 andE2 from Th,i be adjacent to a cellE3 from Th,j . Without loss of
generality, we assume thatEh,i,j = {f1, f2} andEh,j,i = {f3}. Then, the dimension of the
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Figure 5: Convergence rates on a random mesh

mortar space is 2,Ri,j is a2 × 2 matrix, andRj,i is a1 × 2 matrix. It is easy to check that
definition (4.1) results in

Ri,i =
1

2|f3|

 |f1| |f2|+ |f3|

|f1|+ |f3| |f2|

 and Rj,i =
1
2
[

1 1
]
.

Eliminating vector~λ from (2.13), we get the following continuity conditions:

|f1|pf1 + |f2|pf2 = |f3|pf3 and uf1 = uf2 = −uf3 .

Similar condition has been proposed and analyzed numerically in [13]. It has been shown that
the resulting MFD method is exact for linear solutions.

Let p(x, y) = x3y2 + x cos(xy) sin(x) be the exact solution andK be the full tensor,

K(x, y) =
(

(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
.

The right pictures in Fig. 4 and 5 show the convergence rates for the pressure and velocity. In
addition to norm (5.21), we show the convergence rate in the discreteL∞-norm:

|||u− uh|||∞ = max
f

∣∣∣∣ 1
|f |

∫
f
u · nf ds − uh · nf

∣∣∣∣ ,
where maximum is taken over all mesh edges. The convergence rates for the pressure variable
are shown in the following discrete norms:

|||p− ph|||2 =
∑

ei∈Th

|p(ci)− ph(ci)|2 |ei|

and
|||p− ph|||∞ = max

ei∈Th

|p(ci)− ph(ci)|,

whereci is the geometric center of elementei. The use of the geometric center instead of the
mass center is due to the following property of the mortar MFD method. The method is exact
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for linear solutions when the pressure variable,p(ci), is evaluated at the geometric centerci
[5].

The mortar MFD method with the scalar product (2.3) has been used on the smooth
meshes. The convergence rate for the velocity variable is 1.6. This is slightly higher than
the theoretically predicted rate of 1.5 (see Theorem 5.2). The second order convergence rate
for the pressure variable confirms the assertion of Theorem 6.1.

The mortar MFD method with the scalar product (2.4) has been used on the random
meshes. The asymptotically optimal convergence rate for the velocity is in agreement with
the assertion of Theorem 5.1. The second order convergence rate for the pressure variable was
theoretically predicted in Theorem 6.1.
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